G. C. Donald, C. T. H. Davies, R. J. Dowdall, E. Follana, K. Hornbostel, J. Koponen, G. P. Lepage, C. McNeile
We calculate the J/{\psi} mass, leptonic width and radiative decay rate to \gamma \eta_c from lattice QCD including u, d and s quarks in the sea for the first time. We use the Highly Improved Staggered Quark formalism and nonperturbatively normalised vector currents for the leptonic and radiative decay rates. Our results are: M_{J/\psi} -M_{\eta_c} = 116.5(3.2) MeV; \Gamma(J/{\psi} to e^+e^-) = 5.48(16) keV; \Gamma(J/{\psi} to \gamma \eta_c) = 2.49(19) keV. The first two are in good agreement with experiment, with \Gamma(J/{\psi} to e^+e^-) providing a test of a decay matrix element in QCD, independent of CKM uncertainties, to 2%. Our results show that an improved experimental error would enable a similarly strong test from \Gamma(J/{\psi} to \gamma \eta_c).
View original:
http://arxiv.org/abs/1208.2855
No comments:
Post a Comment